ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Dpen Access, Peer-reviewed, Refereed Journal

ON A CLASS OF GENERALIZED CONVEX FUNCTIONS WITH SOME APPLICATIONS -

II
${ }^{1}$ R.K Sahu, and ${ }^{2}$ D.K. Dalai
${ }^{1}$ Department of Mathematics, Vyasanagar Autonomous College, Jajpur Road, Jajpur, Odisha, India
${ }^{3}$ Principal, Govt. Junior College, Ayeba, Kendrapada, Dist - Kendrapada, Odisha, India

7.1 Introduction

J. Sandoor [8] introduced the notion of A-convexity. Under A-convexity he studied the notions of Bsubadditive and anti-symmetricity. R.B. Dash et al. [4] generalized the definition of anti-symmetry from two dimensions to three dimensions and four dimensions. They applied this to prove theorems-on A-convxity, subadditivity and super additivity.

In this chapter, the idea of anti-symmetry is further generalized to n dimensions and is effectively applied to prove theorems on sub-additive and A-convexity and B decreasing properties of functions.

7.2 A-Convex Functions

Definition 7.1

Let V be a vector space and $\mathrm{B}: \mathrm{V} \times \mathrm{V} \times \ldots \times \mathrm{V} \rightarrow \mathrm{V}$ be a map in E^{n}. Then the function $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{R}$ is called B-subadditive (super additive) if

$$
\mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right) \leq(\geq) \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{B}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . . \mathrm{x}_{\mathrm{n}}\right)
$$

for all $x_{i} \in V, i=1,2, \ldots . n$.

Definition 7.2.

The map $\mathrm{B}: \mathrm{V} \times \mathrm{V} \times \ldots \mathrm{V} \rightarrow \mathrm{R}$ is called anti-symmetric map if $\mathrm{B}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)=\mathrm{B}\left(\mathrm{x}_{\sigma(1)}, \mathrm{x}_{\alpha(2)}, \ldots \mathrm{x}_{\sigma(\mathrm{n})}\right)$ and $B\left(x_{1}, x_{2}, \ldots x_{n}\right)=B\left(x_{\tau(1)}, x_{\tau(2)}, \ldots x_{\tau(n)}\right)$
where σ and τ denote the even and odd permutations respectively.

Theorem 7.1

If B is anti-symmetric map in E^{n} and f is sub-additive (super additive), then f is sub-additive (super additive).

Proof: As f is sub-additive (super additive) one can write.

$$
\begin{equation*}
\mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right) \leq(\geq) \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{B}\left(\mathrm{x}_{\sigma(1)}, \mathrm{x}_{\sigma(2)}, \ldots . \mathrm{x}_{\sigma(\mathrm{n})}\right) \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right) \leq(\geq) \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{B}\left(\mathrm{x}_{\tau(1)}, \mathrm{x}_{\tau(2)}, \ldots . \mathrm{x}_{\tau(\mathrm{n})}\right) \tag{7.2}
\end{equation*}
$$

Adding all inequalities in (7.1) over even permutations, we have

$$
\begin{equation*}
\sum_{\sigma} \mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right) \leq(\geq) \sum_{\sigma}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right)+\sum_{\sigma} \mathrm{B}\left(\mathrm{x}_{\sigma(1)}, \mathrm{x}_{\sigma(2)}, \ldots . . \mathrm{x}_{\sigma(\mathrm{n})}\right) \tag{7.3}
\end{equation*}
$$

Adding all inequalities in (7.2) over odd permutations, we have

$$
\begin{equation*}
\sum_{\tau} f\left(\sum_{i=1}^{n} x_{i}\right) \leq(\geq) \sum_{\tau}\left(\sum_{i=1}^{n} f\left(x_{i}\right)\right)+\sum_{\tau} B\left(x_{\tau(1)}, x_{\tau(2)}, \ldots . x_{\tau(n)}\right) \tag{7.4}
\end{equation*}
$$

Now, (7.3) becomes

$$
\begin{aligned}
& \mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{b}} \mathrm{x}_{\mathrm{i}}\right) \sum_{\alpha} 1 \leq(\geq) \sum_{i=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \sum_{\sigma} 1+\sum_{\sigma} \mathrm{B}\left(\mathrm{x}_{\sigma(1)}, \mathrm{x}_{\sigma(2)}, \ldots \mathrm{x}_{\sigma(\mathrm{n})}\right) \\
& \Rightarrow \frac{\mathrm{n}!}{2} \mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right) \leq(\geq) \frac{\mathrm{n}!}{2} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\sum_{\sigma} \mathrm{B}\left(\mathrm{x}_{\sigma(1)}, \mathrm{x}_{\sigma(2)}, \ldots \mathrm{x}_{\sigma(\mathrm{n})}\right)
\end{aligned}
$$

Also (7.4) becomes,

$$
\begin{aligned}
& \mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{b}} \mathrm{x}_{\mathrm{i}}\right) \sum_{\tau} 1 \leq(\geq) \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \sum_{\tau} 1+\mathrm{B}\left(\mathrm{x}_{\tau(1)}, \mathrm{x}_{\tau(2)}, \ldots \mathrm{x}_{\tau(\mathrm{n})}\right) \\
& \Rightarrow \frac{\mathrm{n}!}{2} \mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right) \leq(\geq) \frac{\mathrm{n}!}{2} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\sum_{\tau} \mathrm{B}\left(\mathrm{x}_{\tau(1)}, \mathrm{x}_{\tau(2)}, \ldots \mathrm{x}_{\tau(\mathrm{n})}\right)
\end{aligned}
$$

Adding above equations, we have
$n!f\left(\sum_{i=1}^{n} x_{i}\right) \leq(\geq) n!\sum_{i=1}^{n} f\left(x_{i}\right)$
as other terms are cancelled due to odd and even permutations.

$$
\therefore \mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right) \leq(\geq) \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)
$$

$\Rightarrow \mathrm{f}$ is sub-additive (super additive)

Definition 7.3

Let $\mathrm{B}: \mathrm{V} \times \mathrm{V} \times \mathrm{V} \times \ldots \times \mathrm{V} \rightarrow \mathrm{R}$ be a map in E^{n} with vector space V . Then $\mathrm{f}: \mathrm{V}-\mathrm{R}$ is called absolutely B-sub-additive if

$$
\left|f\left(\sum_{i=1}^{n} x_{i}\right)-\sum_{i=1}^{n} f\left(x_{i}\right)\right| \leq B\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { for all } x_{i} x_{i} \in V, i=1,2, \ldots n
$$

Theorem 7.2

Let $\mathrm{B}: \mathrm{V} \times \mathrm{V} \times \mathrm{V} \times \ldots \times \mathrm{V} \rightarrow \mathrm{R}$ be a map in E^{n} with vector space V and $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{R}$ be absolutely B -sub-additive. Then there is an additive function $\mathrm{g}: \mathrm{V} \rightarrow \mathrm{R}$ such that

$$
|f(x)-g(x)| \leq B(x, x, \ldots, x) \quad \text { for all } x \in V
$$

Proof:

Let us take

$$
\mathrm{x}_{1}=\mathrm{n}^{\mathrm{k}-1} \mathrm{x}, \mathrm{x}_{2}=\mathrm{n}^{\mathrm{k}-1} \mathrm{x}, \ldots . \mathrm{x}_{\mathrm{n}}=\mathrm{n}^{\mathrm{k}-1} \mathrm{x}
$$

Now as f is absolutely B-subadditive, one can write

$$
\begin{aligned}
& \left|f\left(\sum_{i=1}^{n} x_{i}\right)-\sum_{i=1}^{n} f\left(x_{i}\right)\right| \leq B\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
& \Rightarrow\left|f\left(n . n^{k-1} x\right)-n f\left(n^{k-1} x\right)\right| \leq B\left(n^{k-1} x, \ldots . n^{k-1} x\right) \\
& \Rightarrow\left|f\left(n^{k} x\right)-n f\left(n^{k-1} x\right)\right| \leq \bar{B}(x, x, \ldots . x) \\
& \Rightarrow\left|\frac{f\left(n^{k} x\right)}{n^{k}}-\frac{n f\left(n^{k-1} x\right)}{n^{k}}\right| \leq \frac{\bar{B}(x, x, \ldots . x)}{n^{k}}
\end{aligned}
$$

for $\mathrm{k}>\mathrm{m}$,

$$
\begin{aligned}
& \left|\frac{f\left(n^{k} x\right)}{n^{k}}-\frac{f\left(n^{m} x\right)}{n^{m}}\right| \leq\left|\frac{f\left(n^{k} x\right)}{n^{k}}-\frac{f\left(n^{k-1} x\right)}{n^{k-1}}\right|+\left|\frac{f\left(n^{k-1} x\right)}{n^{k-1}}-\frac{f\left(n^{k-2} x\right)}{n^{k-2}}\right| \\
& +\ldots+\left|\frac{f\left(n^{m+1} x\right)}{n^{m+1}}-\frac{f\left(n^{m} x\right)}{n^{m}}\right| \leq B(x, x, . . x)\left(\frac{1}{n^{k}}+\frac{1}{n^{k-1}}+\ldots+\frac{1}{n^{m}}\right)
\end{aligned}
$$

Above line shows hat the sequence of general term is Cauchy.
We know every Cauchy sequence is convergent. So limit exists.
$\therefore \lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{n^{k}}=g(x)$
Now $\left|g\left(\sum_{i=1}^{n} x_{i}\right)-\sum_{i=1}^{n} g\left(x_{i}\right)\right|$
$=\lim _{k \rightarrow \infty}\left|\frac{f\left(\sum_{i=1}^{n} n^{k} x_{i}\right)}{n^{k}}-\sum_{i=1}^{n} \frac{f\left(n^{k} x_{i}\right)}{n^{k}}\right| \leq \lim _{k \rightarrow \infty} \frac{B\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{n^{k}}=0$
$\Rightarrow \mathrm{g}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)$
$\Rightarrow \mathrm{g}$ is additive map.
Now we will show that this g is unique. For this let us assume that there is another function h such that
$|f(x)-h(x)| \leq B(x, x, \ldots, x)$
We have
$|\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})| \leq \mathrm{B}(\mathrm{x}, \mathrm{x}, \ldots, \mathrm{x})$
So, $\quad|g(x)-h(x)| \leq 2 B(x, x, \ldots, x)$
$\Rightarrow\left|\mathrm{g}\left(\mathrm{n}^{\mathrm{k}} \mathrm{x}\right)-\mathrm{h}\left(\mathrm{n}^{\mathrm{k}} \mathrm{x}\right)\right| \leq 2 \mathrm{~B}\left(\mathrm{n}^{\mathrm{k}} \mathrm{x}, \mathrm{n}^{\mathrm{k}} \mathrm{x}, \ldots, \mathrm{n}^{\mathrm{k}} \mathrm{x}\right)$
$\Rightarrow|\mathrm{g}(\mathrm{x})-\mathrm{h}(\mathrm{x})| \leq \frac{2 \overline{\mathrm{~B}}(\mathrm{x}, \mathrm{x}, \ldots, \mathrm{x})}{\mathrm{n}^{\mathrm{k}}} \rightarrow 0$ as $\mathrm{k} \rightarrow \infty$
(note that, $\mathrm{g}\left(\mathrm{n}^{\mathrm{k}} \mathrm{x}\right)=\mathrm{n}^{\mathrm{k}} \mathrm{g}(\mathrm{x}), \mathrm{h}\left(\mathrm{n}^{\mathrm{k}} \mathrm{x}\right)=\mathrm{n}^{\mathrm{k}} \mathrm{h}(\mathrm{x})$)
So $g(x)=h(x)$, for all x .
$\Rightarrow \mathrm{g}$ is unique.
Now inductivity property shows that
$\left|f\left(n^{k} x\right)-n^{k} f(x)\right| \leq B\left(n^{k} x, n^{k} x, \ldots . n^{k} x\right)$
$=\mathrm{n}^{\mathrm{k}} \mathrm{B}(\mathrm{x}, \mathrm{x}, \ldots, \mathrm{x})$
Dividing n^{k} and taking the limit as $\mathrm{k} \rightarrow \infty$,
We get
$|g(x)-f(x)| \leq B(x, x, \ldots, x)$

Definition 7.4

The map $g: R_{+} \rightarrow R$ is called B-decreasing on R_{+}if
$x_{1}>x_{2} \Rightarrow g\left(x_{1}\right) \leq g\left(x_{2}\right)+B\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for all $x_{i} \in R_{+}, i=1,2, \ldots . n$.

Theorem 7.3

Let $f: R_{+} \rightarrow R$ be a function such that the map $x \rightarrow \frac{f(x)}{x}$ is B-decreasing on R_{+}, then f is B_{1}-subadditive,
$B_{1}\left(x_{1}, x_{2} \ldots x_{n}\right)=x_{1} B\left(\sum_{i=1}^{n} x_{i}, x_{1}, x_{1} \ldots x_{i}\right)+x_{2} B\left(\sum_{i=1}^{n} x_{i}, x_{2}, x_{2} \ldots x_{2}\right)+\ldots .$.
$+x_{n} B\left(\sum_{i=1}^{n} x_{i}, x_{n}, x_{n} \ldots x_{n}\right)$
for all $x_{i} \in R_{+}, i=1,2, \ldots n$

Proof: Now $x_{i} \in R_{+}, i=1,2, \ldots . n$
Also $\quad \sum_{i=1}^{n} x_{i}>x_{1}$
Then $\frac{f\left(\sum_{i=1}^{n} x_{i}\right)}{\sum_{i=1}^{n} x_{i}} \leq \frac{f\left(x_{1}\right)}{x_{1}}+B\left(\sum_{i=1}^{n} x_{1}, x_{1}, \ldots x_{1}\right)$
Similarly, we have
$\frac{f\left(\sum_{i=1}^{n} x_{i}\right)}{\sum_{i=1}^{n} x_{i}} \leq \frac{f\left(x_{2}\right)}{x_{2}}+B\left(\sum_{i=1}^{n} x_{i}, x_{2}, x_{2}, \ldots x_{2}\right)$
$\frac{f\left(\sum_{i=1}^{n} x_{i}\right)}{\sum_{i=1}^{n} x_{i}} \leq \frac{f\left(x_{n}\right)}{x_{n}}+B\left(\sum_{i=1}^{n} x_{i}, x_{n}, x_{n}, \ldots x_{n}\right)$
$\operatorname{Now} f\left(\sum_{i=1}^{n} x_{i}\right)=\frac{f\left(\sum_{i=1}^{n} x_{i}\right)}{\sum_{i=1}^{n} x_{i}}\left(\sum_{i=1}^{n} x_{i}\right) \leq \sum_{i=1}^{n} f\left(x_{i}\right)+x_{1} B\left(\sum_{i=1}^{n} x_{i}, x_{1}, x_{1}, \ldots x_{1}\right)+\ldots$

$$
+\mathrm{x}_{\mathrm{n}} \mathrm{~B}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{n}}, \ldots . . \mathrm{x}_{\mathrm{n}}\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{B}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right)
$$

$\Rightarrow \mathrm{f}$ is B_{1}-sub-additive.

Theorem 7.4

Let $A: R_{+} \times R_{+} \times R_{+} \rightarrow R$ and $f: R_{+} \rightarrow R$ be A concave function with $A_{1}: C \times C \rightarrow R$ with convex vector space C. Let $A_{1}(.,)=.A(.,, 0)$. Assume $f(0)=0$. Then f is B_{1}-subadditive where

$$
\mathrm{B}_{1}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right)=-\mathrm{x}_{1} \mathrm{~A}_{1}\left(\mathrm{x}_{1} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right)-\mathrm{x}_{2} \mathrm{~A}_{1}\left(\mathrm{x}_{2}, \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right) \ldots \mathrm{x}_{\mathrm{n}} \mathrm{~A}_{1}\left(\mathrm{x}_{\mathrm{n}}, \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right)
$$

Proof:

Note that the function f is A-convex (A-Concave) if

$$
\frac{f(x)-f(z)}{x-z} \leq(z) \frac{f(y)-f(z)}{y-z}+A(x, y, z)
$$

Where $\mathrm{x}<\mathrm{z}<\mathrm{y}$
By hypothesis, f is A-concave. So one can write,

$$
\begin{aligned}
& \frac{f(x)-f(z)}{x-z} \geq \frac{f(y)-f(z)}{y-z}+A(x, y, z) \\
& \Rightarrow(y-z)(f(x)-f(z)) \geq(x-z)(f(y)-f(z))+(y-z)(x-z) A(x, y, z) \\
& \Rightarrow(y-z) f(x)-(y-z) f(z) \geq(x-z) f(y)-(x-z) f(z)+(y-z)(x-z) A(x, y, z) \\
& \Rightarrow(y-z) f(x) \geq(x-z) f(y)-(x-z) f(z)+(y-z) f(z)+(y-z)(x-z) A(x, y, z) \\
& \Rightarrow(y-z) f(x) \geq(x-z) f(y)+(y-z) f(z)+(y-z)(x-z) A(x, y, z) \\
& \Rightarrow f(x) \geq \frac{x-z}{y-z} f(y)+\frac{y-x}{y-z} f(z)+(x-z) A(x, y, z)
\end{aligned}
$$

Take

$$
\begin{aligned}
& \lambda=\frac{x-z}{y-z} \in(0,1) \\
& 1-\lambda=\frac{y-x}{y-z}
\end{aligned}
$$

Also $\lambda y+(1-\lambda) z=\frac{x-z}{y-z} y+\frac{y-x}{y-z} z=x$
So $\quad f(x) \geq \lambda f(y)+(1-\lambda) f(z)+(x-z) A(x, y, z)$
By assumption, $f(0)=0$
$\therefore \frac{\mathrm{f}(\mathrm{x})-\mathrm{f}(0)}{\mathrm{x}-0}=\frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}}$
Now from above, we observe that the function $\frac{f(x)}{x}$ is A_{1} increasing. So one can write

$$
\frac{f\left(x_{1}\right)}{x_{1}} \geq \frac{f\left(\sum_{i=1}^{n} x_{i}\right)}{\sum_{i=1}^{n} x_{i}}+A_{1}\left(x_{1}, \sum_{i=1}^{n} x_{i}\right)
$$

$$
\frac{f\left(x_{n}\right)}{x_{n}} \geq \frac{f\left(\sum_{i=1}^{n} x_{i}\right)}{\sum_{i=1}^{n} x_{i}}+A_{n}\left(x_{n}, \sum_{i=1}^{n} x_{i}\right)
$$

On simplification, we have

$$
\sum_{i=1}^{n} x_{i} \geq x_{1} \frac{f\left(\sum_{i=1}^{n} x_{i}\right)}{\sum_{i=1}^{n} x_{i}}+\ldots+x_{n} \frac{f \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}}+x_{1} A_{1}\left(x_{1}, \sum_{i=1}^{n} x_{i}\right)+\ldots+x_{n} A_{n}\left(x_{n}, \sum_{i=1}^{n} x_{i}\right)
$$

$$
=\mathrm{f}\left(\sum_{\mathrm{i}=\mathrm{F}}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right)-\mathrm{B}_{1}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right)
$$

$$
\Rightarrow \mathrm{f}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right) \leq \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{B}_{1}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right)
$$

$\Rightarrow \mathrm{f}$ is B_{1} sub-additive with given B_{1} above.

Theorem 7.5

Let $f: R_{+} \rightarrow R$ be convex and B-sub-additive. Then the function $\frac{f(\cdot)}{x}$ is C-increasing for $\mathrm{C}: \mathrm{R}_{+} \times \mathrm{R}_{+} \rightarrow \mathrm{R}$.

Proof: Take $\lambda=\frac{(\mathrm{n}-1) \mathrm{x}}{(\mathrm{n}-1) \mathrm{x}+\mathrm{h}} \in(0,1), \mathrm{h}>0$.

$$
\begin{aligned}
& \lambda x+(1-\lambda)(n x+h) \\
& =\frac{(n-1) x}{(n-1) x+h} \cdot x+\left[1-\frac{(n-1) x}{(n-1) x+h}\right](n x+h) \\
& =\frac{(n-1) x}{(n-1) x+h} \cdot x+\frac{(n-1) x+h-(n-1) x}{(n-1) x+h}(n x+h)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(\mathrm{n}-1) \mathrm{x}^{2}+\mathrm{nxh}+\mathrm{h}^{2}}{(\mathrm{n}-1) \mathrm{x}+\mathrm{h}} \\
& =\mathrm{x}+\mathrm{h}
\end{aligned}
$$

As f is B-sub additive, we have

$$
\mathrm{f}(\mathrm{nx}+\mathrm{h})=\mathrm{f}(\mathrm{x}+\ldots+\mathrm{x}+\mathrm{x}+\mathrm{h}) \leq(\mathrm{n}-1) \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}+\mathrm{h})+\mathrm{B}(\mathrm{x}, \mathrm{x}, \ldots \mathrm{x}, \mathrm{x}+\mathrm{h})
$$

As f is convex function, one can write

$$
\begin{aligned}
& f(x+h) \leq \lambda f(x)+(1-\lambda) f(n x+h) \\
& =\lambda f(x)+(1-\lambda)\{(n-1) f(x)+f(x+h)+B(x, x, \ldots x, x+h)\} \\
& =\lambda f(x)+(n-1) f(x)-(n-1) \lambda f(x)+f(x+h)-\lambda f(x+h) \\
& \quad+(1-\lambda) B(x, x, \ldots ., x, x+h) \\
& \Rightarrow \lambda f(x+h) \leq(n-1) f(x)-(n-2) \lambda f(x)+(1-\lambda) B(x, x, \ldots x, x+h) \\
& \Rightarrow \frac{(n-1) x}{(n-1) x+h} f(x+h) \\
& \leq(n-1) f(x)-\frac{(n-2)(n-1) x}{(n-1) x+h} f(x)+\left(1-\frac{(n-1) x}{(n-1) x+h} B(x, x, \ldots . x, x+h)\right. \\
& \Rightarrow \frac{(n-1) x}{(n-1) x+h} f(x+h) \leq(n-1) f(x)-\frac{(n-2)(n-1) x}{(n-1) x+h} f(x)+\frac{h}{(n-1) x+h} B(x, x, \ldots x, x+h) \\
& =\frac{(n-1)(x+h)}{(n-1) x+h} f(x)+\frac{h}{(n-1) x+h} B(x, x, \ldots x+h) \\
& \Rightarrow(n-1) x f(x+h) \leq(n-1)(x+h) f(x)+h B(x, x, \ldots x, x+h)
\end{aligned}
$$

$$
\Rightarrow \frac{(\mathrm{n}-1) \mathrm{xf}(\mathrm{x}+\mathrm{h})}{(\mathrm{n}-1) \mathrm{x}(\mathrm{x}+\mathrm{h})} \leq \frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}}+\frac{\mathrm{hB}(\mathrm{x}, \mathrm{x}, \ldots \mathrm{x}, \mathrm{x}+\mathrm{h})}{(\mathrm{n}-1) \mathrm{x}(\mathrm{x}+\mathrm{h})}
$$

$$
\Rightarrow \frac{\mathrm{f}(\mathrm{x}+\mathrm{h})}{\mathrm{x}+\mathrm{h}} \leq \frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}}+\mathrm{C}(\mathrm{x}, \mathrm{~h})
$$

where $C(x, h)=-\frac{h B(x, x, \ldots x, x+h)}{(n-1) x(x+h)}$
So the function $\frac{f(x)}{x}$ is C-increasing.

References

[1] J. Sandor, Some Open Problems in the Theory of Functional Equations, Simpozium on Applications of Fundamental Equations in Education, Science and Industry. (4th June, 1988), Odorhelue - Seculese, Romania.
[2] J. Sandor, On the Principle of Condensation Singularities, Fourth National Conference on Mathematical Inequalities, Siblu, (30-31 Oct., 1992).
[3] J. Sandor, Generalised Invexity and Its Application in Optimization Theory, First Joint Conference on Modern Applied Analysis, Sieni (Romania), (12-17 June, 1995)].
[4] J. Sandor, On Certain Classes of Generalized Convex Functions with Application, I, Studia Univ, Babes-Bolyai, Math, 44, (1999), 73-84.
[5] J. Sandor, On Cerntain Classes of Generalized Convex Functions with Application, II, Studia Univ, '"Babes-Bolyai'", Mathmatica, XLVIII (1), (2002), 109-117.
[6] R.B. Dash, D.K. Dalai and N. Mishra, A Note on a Class Generalised Convex Functions with some Applications, International Review of Pure and Applied Mathematical (July - December) 2009, Volume 5, No. 2, PP. 243-253.
[7] B.C. Dash, and D.K. Dalai On a Class of Generalised Convex Function With Some Applications, American Journal of Mathematics and Mathematical Sciences, 4(1), January-June 2015. ISSN: 22780874. pp, 13-20.
[8] R.K. Sahoo, B.C. Dash, P.C. Nayak, and D.K. Dalai, A note on subadditivity and antisymmetric involving generalized convex function, International Journal of Scientific research in Computer Science and Engineering and Information Technology, 2017, IJSRCSET vol.2, issue 5 ISSN 25563307.

